
John Sterrett
CEO of Procure SQL

Advanced Data
Protection with Azure
SQL Database and SQL
Server

procuresql.com

About John Sterrett

2

john@procuresql.com linkedin.com/in/johnsterrett

procuresql.com
mailto:john@procuresql.com
https://www.linkedin.com/in/johnsterrett

Learn how to secure your data with Auditing,
Row-Level Security, and Always Encrypted

Gain insight into pros and cons to utilizing
advanced data protection features.

Leverage built in cloud features provided by
Azure SQL for advanced data security.

Today’s
Goals

Goal of Today’s Session

Azure SQL Built In Protection Features

Azure SQL
Firewall &

Private Link

Advanced
Threat

Protection

Transparent
Data

Encryption

Data
Discovery and
Classification

Encryption in-
transit

Vulnerability
Assessments

Azure SQL Server – Vulnerability Assessment

Details and Remediate Steps

Discover and Classify Sensitive Data

Adding Classified Columns

Data Classification after Saving Recommendations

Data Sensitive Metrics Found in our SQL Audit

SQL Audit
Identify Who, What, When,
Where behind data access,
security and schema
changes

What do these compliances
have in common?

ISO 27001

GDPR

PCI DSS (Payment Card Industry Data Security Standard)

HIPAA (Health Insurance Portability and Accountability Act)

SOX (Sarbanes-Oxley Act)

SQL Audit Enables You To….

Track login attempts, failed logins,
which can indicate attempts of

malicious attempts

Changes to database schema,
permissions, and security

configurations

Record Access to both data and object
changes in real-time

1. Drag & drop your photo

onto the slide.

2. Resize & crop so the key

part of the photo will

show up here. You will

want the picture to go to

ALL THE WAY to the top,

bottom, and right side. It

should cover the gray

area.

SQL Audit Decisions

What do we Audit? Were does

Audit Logging Go?

Where do we store audit data?

What should happen when audit logging fails?

How much log data do we keep?

How do we secure the Audit Logs?

How do we Organize Audits?

What to Audit for HIPAA, PCI &
GDPR?

Compliance Common SQL Audit Actions

HIPAA SELECT, INSERT, UPDATE, DELETE (data access/modification) on
PHI tables; login success/failure; permission changes;

PCI DSS User account creation/modification/deletion; login attempts;
permission changes; data access/modification

GDPR Logon activity; unauthorized access attempts; data access and
processing

Audit Action Groups for HIPAA, GDPR, PCI
Audit Action Group Description

SUCCESSFUL_LOGIN_GROUP Captures all successful login attempts. Important for tracking authorized access (HIPAA, GDPR, PCI).

FAILED_LOGIN_GROUP Captures failed login attempts, helping detect unauthorized access or brute force attacks (HIPAA, GDPR, PCI).

SERVER_PRINCIPAL_CHANGE_GROUP Tracks creation, alteration, or deletion of server-level principals (logins, users). Critical for permission management (HIPAA, PCI).

SERVER_ROLE_MEMBER_CHANGE_GROUP Monitors changes to server role memberships, ensuring role-based access control integrity (HIPAA, PCI).

AUDIT_CHANGE_GROUP Audits creation, modification, or deletion of audit objects and audit specifications, ensuring audit trail integrity (HIPAA, PCI, GDPR).

APPLICATION_ROLE_CHANGE_PASSWORD_GROUP Tracks changes to application role passwords, securing application-level access (HIPAA, PCI).

LOGIN_CHANGE_PASSWORD_GROUP Captures password changes for logins, supporting credential management policies (HIPAA, PCI).

SCHEMA_OBJECT_CHANGE_GROUP Monitors DDL changes (CREATE, ALTER, DROP) on schema objects at the server level, important for tracking structural changes
(HIPAA, GDPR).

DATABASE_OBJECT_PERMISSION_CHANGE_GROUP Tracks permission changes on database objects, ensuring proper access control (HIPAA, PCI, GDPR).

DATABASE_PRINCIPAL_CHANGE_GROUP Monitors changes to database principals (users, roles), supporting identity management (HIPAA, PCI).

These server-level action groups are added to server audit specifications, which audit events across the entire SQL Server instance.

For detailed data access auditing (e.g., SELECT, INSERT, UPDATE, DELETE on specific tables), database audit specifications with database-

level action groups are used.

SQL Audit Action Groups Cheat Sheet

Power BI Dashboard Link

https://app.powerbi.com/view?r=eyJrIjoiNGE4OWM4NjctYmQyNC00ZTE2LTlhYzctY2UyMTJjMDI3ZmU2IiwidCI6IjFiZWI4N2M1LWU2MjktNGFmOS1iZjE2LWZiZDAyNzAyMzMxNCJ9

SQL Audit – SQL Server vs. Azure SQLDB

• To create, alter, or drop a server audit,
principals require the ALTER ANY SERVER
AUDIT or the CONTROL SERVER permission.

• Users with the ALTER ANY SERVER AUDIT
permission can create server audit
specifications and bind them to any audit.

• After a server audit specification is created, it
can be viewed by principals with the CONTROL
SERVER or ALTER ANY SERVER AUDIT
permissions, the sysadmin account, or
principals having explicit access to the audit.

• Need Contributor role or higher on the database or
server resource

• Permissions to execute 'Microsoft.Sql/servers/extendedAuditingSettings/write’

• Permission to execute 'Microsoft.Sql/servers/databases/extendedAuditingSettings/write'

• The following audit policies are included by
default

• BATCH_COMPLETED_GROUP
SUCCESSFUL_DATABASE_AUTHENTICATION_GROUP
FAILED_DATABASE_AUTHENTICATION_GROUP

• Additional changes can be made via API calls.

• Enabling auditing on the database in addition to
enabling auditing on the server doesn't override or
change any of the settings of the server auditing

Azure SQL DatabaseSQL Server

https://learn.microsoft.com/en-us/azure/azure-sql/database/auditing-manage-using-api?view=azuresql

Targets include

Azure - Blob storage, Log Analytics, Event Hub

SQL Server – Files, Event Logs

Use file targets with appropriate size limits (MAXSIZE) and rollover
files (MAX_ROLLOVER_FILES) to prevent disk space issues.

Reserve disk space upfront (RESERVE_DISK_SPACE = ON) to avoid
audit failures due to insufficient space.

SQL Audit Targets - Storage

Creating a SQL Audit

How to Audit events?
Server Audit Specifications and Database Audit Specifications are
used to specify what events we will audit.

T-SQL Basic Example

CREATE SERVER AUDIT
Audit_Compliance TO FILE (
FILEPATH = 'C:\AuditLogs\')
WITH (ON_FAILURE =
CONTINUE);
GO

ALTER SERVER AUDIT
Audit_Compliance WITH (STATE
= ON);
GO

CREATE SERVER AUDIT SPECIFICATION AuditSpec_Compliance
FOR SERVER AUDIT Audit_Compliance
ADD (SUCCESSFUL_LOGIN_GROUP),
ADD (FAILED_LOGIN_GROUP),
ADD (SERVER_PRINCIPAL_CHANGE_GROUP),
ADD (SERVER_ROLE_MEMBER_CHANGE_GROUP),
ADD (AUDIT_CHANGE_GROUP),
ADD (LOGIN_CHANGE_PASSWORD_GROUP),
ADD (APPLICATION_ROLE_CHANGE_PASSWORD_GROUP);
GO
ALTER SERVER AUDIT SPECIFICATION AuditSpec_Compliance
WITH (STATE = ON);
GO

CREATE DATABASE AUDIT [CustomerDataAudit]
FOR SERVER AUDIT [SQLAudit]
ADD (SELECT ON OBJECT::[dbo].[Customers] BY [public]),
ADD (UPDATE ON OBJECT::[dbo].[Customers] BY [public]),
ADD (INSERT ON OBJECT::[dbo].[Customers] BY [public]),
ADD (DELETE ON OBJECT::[dbo].[Customers] BY [public])

Viewing Audit with Log File Viewer

SQL Audit Best Practices

Clear Audit Goals and ScopeDefine

Server and Database Audit specifications – Limit Tracked EventsUse

Audit Logs RegularlyReview

Secure Your Audit LogsSecure

Your Audit LogsBackup

Your Audit - Verify intended events are being loggedAudit

Row-Level
Security
(RLS)
Securing Your Data at

the Row Level

Applications need to limit a users access to only
certain rows of data in a database. Security
needs to be embedded in the database to work
for ALL APPLICATIONS.

Control both read and write data at the row level

No app changes needed, works transparently when
queries execute

Centralized Security Logic within the database

Apps consume secured data
Excel, .NET, Power BI – Direct Query, etc.…

Why Row-Level Security?

Health Care (Patient Data Access Controls)
Nurses can only view rows of their assigned patients

Doctors access broader data but are blocked from data
unless authorized

Patients can only see their data

Financial Services
Financial Advisors only see their client’s portfolios

Auditors access transition history for only the Financial
Advisors they audit

E-Commerce / Multi-Tenant
Vendors view only their sales records and customer orders

Platform admins access data for vendors assigned to
them.

RLS Real-World Examples

Predicate-based access control added to
regular access

Two types of security predicates

Filter predicates – silently filter SELECT, UPDATE
and DELETE operations to exclude rows that will
not satisfy the predicate

Block predicates – block INSERT, UPDATE, DELETE
operations that will not satisfy the predicate

AFTER INSERT and AFTER UPDATE predicates can
prevent users from updating rows to values that violate
the predicate.

BEFORE UPDATE predicates can prevent users from
updating rows that currently violate the predicate.

BEFORE DELETE predicates can block delete operations.

How does RLS Work?

How to Implement RLS

CustomerID FirstName LastName SalesRep

1001 John

1002 Kon

1003 John

dbo.Customers

Each row of your table has

column that determine which

user can access the data

CREATE FUNCTION RLS.CustomerPredicate (@SalesRep AS sysname)
RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN SELECT 1 AS Access
WHERE @SalesRep = USER_NAME() OR USER_NAME() = 'Manager'
GO

Create inline table-value

function that defines row

level access criteria

Security policy adds security

predicates on tables using

the function provided

CREATE SECURITY POLICY RLS.CustomerPolicy
ADD FILTER PREDICATE RLS.CustomerPredicate(SalesRep) ON Sales.Customer,
ADD BLOCK PREDICATE RLS.CustomerPredicate(SalesRep) ON Sales.Customer
GO

Authorization Methods with RLS

Any lookup defined by business rules can be used

Lookup Options
SESSION_CONTEXT() – Applications

Local Lookup table

SQL Roles

Specific users – admins as an example

RLS Example (Group Activity)

User Name Country Sales

Fred USA 10000

Chris USA 9500

Tom France 9600

Fred Spain 9200

Chris Germany 9000

CEO Fred Chris Tom

USA France

Database Roles

Database Users

dbo.Sales - Table

RLS – User lookup Example
CREATE FUNCTION
Security.fn_SalesSecurity(@UserName AS sysname)
RETURNS TABLE
WITH SCHEMABINDING
AS

 RETURN SELECT 1 AS fn_SalesSecurity_Result
 -- Logic for filter predicate
 WHERE @UserName = USER_NAME() OR USER_NAME() =
'CEO’;
GO

CREATE SECURITY POLICY Security.UserFilter
ADD FILTER PREDICATE
Security.fn_SalesSecurity(UserName)
ON dbo.Sales WITH (STATE = ON);
GO

EXECUTE AS USER = 'CEO’;
SELECT * FROM Sales;
REVERT;
GO

EXECUTE AS USER = 'Fred’;
SELECT * FROM Sales;
REVERT;

Database

User

CEO

Database

User

Fred

User Name Country Sales

Fred USA 10000

Chris USA 9500

Tom France 9600

Fred Spain 9200

Chris Germany 9000

dbo.Sales - Table

User Name Country Sales

Fred USA 10000

Fred Spain 9200

RLS – SQL Roles Example
ALTER ROLE [USA] ADD MEMBER [CEO]
ALTER ROLE [FRANCE] ADD MEMBER [CEO]
ALTER ROLE [SPAIN] ADD MEMBER [CEO]

ALTER ROLE [USA] ADD MEMBER [Fred]
ALTER ROLE [USA] ADD MEMBER [Chris]

ALTER ROLE [FRANCE] ADD MEMBER [Tom]
ALTER ROLE [SPAIN] ADD MEMBER [Fred]
ALTER ROLE [GERMANY] ADD MEMBER [Chris]

CREATE FUNCTION Security.fn_SalesSecurity(@RoleName AS
sysname)
RETURNS TABLE
WITH SCHEMABINDING AS
RETURN (SELECT 1 AS AccessGranted

WHERE IS_ROLEMEMBER(@RoleName) = 1);

GO

EXECUTE AS USER = 'CEO’;
SELECT * FROM Sales;
REVERT;
GO

EXECUTE AS USER = ‘Fred’;
SELECT * FROM Sales;
REVERT;
GO

Database

User

CEO

Database

User

Fred

User Name Country Sales

Fred USA 10000

Chris USA 9500

Tom France 9600

Fred Spain 9200

Chris Germany 9000

dbo.Sales - Table

User Name Country Sales

Fred USA 10000

Fred Spain 9200

RLS Lookup Table Example

CREATE TABLE RLS.UsersSuppliers (

UsersSuppliersID int NOT NULL CONSTRAINT
PK_RLSUsersSuppliers PRIMARY KEY CLUSTERED
IDENTITY
,UserID nvarchar(255) NOT NULL
,SupplierID int NOT NULL)
--Grant the test user access
--to a single supplier ID

INSERT INTO RLS.UsersSuppliers (UserID,
SupplierID)

VALUES ('RLSLookupUser’,4)

CREATE FUNCTION RLS.AccessPredicate_SupplierID_PurchasingSuppliers
(@SupplierID int)
RETURNS TABLE
WITH SCHEMABINDING
AS RETURN

SELECT 1 AccessResult
FROM RLS.UsersSuppliers US
INNER JOIN Purchasing.Suppliers PS
 ON US.SupplierID = PS.SupplierID
WHERE US.SupplierID = @SupplierID
AND US.UserID = USER_NAME()
GO

CREATE SECURITY POLICY
RLS.SecurityPolicy_SupplierID_PurchasingSuppliers
ADD FILTER PREDICATE
RLS.AccessPredicate_SupplierID_PurchasingSuppliers
(SupplierID) ON Purchasing.Suppliers,
ADD BLOCK PREDICATE
RLS.AccessPredicate_SupplierID_PurchasingSuppliers(SupplierID) ON
Purchasing.Suppliers WITH (STATE = ON, SCHEMABINDING = ON)

UserSuppliersID UserID SuppliersID

1 RLSLookupUser 4

RLS Side Attacks

Malicious Security Policy Manager

Divide By Zero Attack

Cross-feature compatibility

Divide By Zero Attack

Divide By Zero At Scale
WHILE @CustomerID < 850
BEGIN
 WHILE @CreditLimit < 10000 AND @CustomerID NOT IN (SELECT
CustomerID from @Customers)
 BEGIN
 BEGIN TRY
 INSERT INTO @Customers (CustomerID, CreditLimit)
 SELECT C.CustomerID, C.CreditLimit
 FROM Sales.Customers C
 WHERE C.CustomerID= @CustomerID
 AND 1/(C.CreditLimit - @CreditLimit) = 0
 END TRY
 BEGIN CATCH
 INSERT INTO @Customers (CustomerID, CreditLimit)
 SELECT @CustomerID, @CreditLimit
 BREAK --Stop processing this row when the correct value
is found

 END CATCH
 SELECT @CreditLimit += 1
 END
 SELECT @CustomerID += 1
 SELECT @CreditLimit = 0
END

SELECT *
FROM @Customers
ORDER BY CustomerID

RLS Identify Attacks

Excessive Errors – 8134 (Divide By
Zero)

SQL Server Side Trace

Extended Events

Server or Database Audits
(Why we started with Audits
☺)

SQL Advanced Threat
Protection

Performance changes

Excessive CPU Usage

Excessive requests per second

RLS Best Practices

It's highly recommended to create a separate schema for the RLS objects:
predicate functions, and security policies.

The security policy manager doesn't require SELECT permission on the
tables they protect.

Keep predicate functions short and sweet. Avoid using excessive table
joins in predicate functions to maximize performance.

Follow regular performance tuning best practices for predicates.

Features That Don’t Play Well With RLS

DBCC SHOW_STATISTICS

Filestream (Not Supported)

Memory-Optimized Tables

Indexed Views

Change Data Capture

Full-Text Search

Columnstore Indexes

Partitioned Views

Temporal Tables

More Details : Microsoft Learn RLS Cross-Feature Compatibility

https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver16#Limitations
https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver16#Limitations
https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security?view=sql-server-ver16#Limitations

RLS Anti-Patterns

Using Features that
can introduce data

leakage

Highly Transactional
Systems

Databases without
Direct user access

Less Experienced
Teams

Staging or Loading
Tables

Always
Encrypted

Why Should We Use Always Encrypted?

Feature Encrypt
Data At

Protects Against Key Management App Changed
Needed

Transparent Data Encryption (TDE) Rest (files) Physical theft Internal or EKM No

Backup Encryption Backup files Backup theft Internal or EKM No

Column Level Encryption Column
Level

Unauthorized access to
column data

Internal or EKM Yes

TLS Transit Network eavesdropping N/A No

Always Encrypted Column
Level

DBAs, admins, memory
attacks

External (client side) Yes

Encryption Keys

CREATE COLUMN MASTER KEY [CMK1]
WITH
(
KEY_STORE_PROVIDER_NAME =
N'MSSQL_CERTIFICATE_STORE’,
KEY_PATH =
N'LocalMachine/My/2379554....’,
ENCLAVE_COMPUTATIONS (SIGNATURE =
0x5B1A...)

COLUMN ENCRYPTION KEY [CEK1]
WITH VALUES
(
COLUMN_MASTER_KEY = [AE_CMK1],

ALGORITHM = 'RSA_OAEP’,
ENCRYPTED_VALUE = 0x01700000016...

)

• Column encryption keys (CEK) –
encrypts data

• Column master keys (CMKs) – encrypts
CEKs

Two-level key
hierarchy

• Enclave-enabled – CMKs have
ENCLAVE_COMPUTATIONS set

• Enclave-enabled CEKs are encrypted
with enclave-enabled CMKS

The database
stores

metadata
about keys

Key Storage Decisions

Windows – Certificate Store
Control and Compliance

No Cloud Dependency

Existing Infrastructure Utilization

Simple Implementation for
Smaller Deployments

No Additional Costs

Azure Key vault
Requires Azure Key Vault Access

Separation of Duties

End to End Protection

Centralized Management

Scalable and Flexibility

Enhanced Security (RBAC)

Simple Key Rotation

Always Encrypted Types in the Beginning
• Deterministic

• Less Secure and Predictable

• Great WHERE clause equality
JOINS

• Indexes

• Randomize
• More Secure

• Non-Serchable (SQL 2016 days)

You must decide during the setup of encrypting a column.

Deterministic vs Randomized

Deterministic (Not Random) Randomized Plaintext

Always Encrypted with Secure Enclaves

SQL Bits – Demystifying Always Encrypted with security enclaves

AE without Secure Enclaves AE with Secure Enclaves

https://www.youtube.com/watch?v=bAIo5iHNGXM
https://www.youtube.com/watch?v=bAIo5iHNGXM
https://www.youtube.com/watch?v=bAIo5iHNGXM

Computation over encrypted Columns

Randomized No scalar operations

Deterministic Equality queries

Randomized & enclaved-enabled
keys

Range/LIKE queries, sorting

Always Encrypted - Required Code Changes

Connection String (Encrypted Setting=Enabled)]

Parametrization of Queries – No literals in filters

Explicit Data Type (Parameter Type must match encrypted
column type)

Enabling Always Encrypted (1 of 5)

Enabling Always Encrypted (2 of 5)

Enabling Always Encrypted (3 of 5)

Enabling Always Encrypted (4 of 5)

Enabling Always Encrypted (5 of 5)

Connecting with SSMS 21

Encrypted Columns – No keys

Decrypted Data – With Keys

Questions and Contact Information
Feedback for slides

procuresql.comjohn@procuresql.com https://www.linkedin.com/in/jo

hnsterrett

procuresql.com
mailto:john@procuresql.com
https://www.linkedin.com/in/johnsterrett
https://www.linkedin.com/in/johnsterrett

	Introduction
	Slide 1: Advanced Data Protection with Azure SQL Database and SQL Server
	Slide 2: About John Sterrett
	Slide 3: Goal of Today’s Session
	Slide 4: Azure SQL Built In Protection Features
	Slide 6: Azure SQL Server – Vulnerability Assessment
	Slide 7: Details and Remediate Steps
	Slide 8: Discover and Classify Sensitive Data
	Slide 9: Adding Classified Columns
	Slide 10: Data Classification after Saving Recommendations
	Slide 11: Data Sensitive Metrics Found in our SQL Audit
	Slide 12: SQL Audit
	Slide 13: What do these compliances have in common?
	Slide 14: SQL Audit Enables You To….
	Slide 15: SQL Audit Decisions
	Slide 16: What to Audit for HIPAA, PCI & GDPR?
	Slide 17: Audit Action Groups for HIPAA, GDPR, PCI
	Slide 18: SQL Audit Action Groups Cheat Sheet
	Slide 19: SQL Audit – SQL Server vs. Azure SQLDB
	Slide 20: SQL Audit Targets - Storage
	Slide 21: Creating a SQL Audit
	Slide 22: How to Audit events?
	Slide 23: T-SQL Basic Example
	Slide 24: Viewing Audit with Log File Viewer
	Slide 25: SQL Audit Best Practices
	Slide 26: Row-Level Security (RLS)
	Slide 27: Why Row-Level Security?
	Slide 28: RLS Real-World Examples
	Slide 29: How does RLS Work?
	Slide 30: How to Implement RLS
	Slide 31: Authorization Methods with RLS
	Slide 32: RLS Example (Group Activity)
	Slide 33: RLS – User lookup Example
	Slide 34: RLS – SQL Roles Example
	Slide 35: RLS Lookup Table Example
	Slide 36: RLS Side Attacks
	Slide 37: Divide By Zero Attack
	Slide 38: Divide By Zero At Scale
	Slide 39: RLS Identify Attacks
	Slide 40: RLS Best Practices
	Slide 41: Features That Don’t Play Well With RLS
	Slide 42: RLS Anti-Patterns
	Slide 43: Always Encrypted
	Slide 44: Why Should We Use Always Encrypted?
	Slide 45: Encryption Keys
	Slide 46: Key Storage Decisions
	Slide 47: Always Encrypted Types in the Beginning
	Slide 48: Deterministic vs Randomized
	Slide 49: Always Encrypted with Secure Enclaves
	Slide 50: Computation over encrypted Columns
	Slide 51: Always Encrypted - Required Code Changes
	Slide 52: Enabling Always Encrypted (1 of 5)
	Slide 53: Enabling Always Encrypted (2 of 5)
	Slide 54: Enabling Always Encrypted (3 of 5)
	Slide 55: Enabling Always Encrypted (4 of 5)
	Slide 56: Enabling Always Encrypted (5 of 5)
	Slide 57: Connecting with SSMS 21
	Slide 58: Encrypted Columns – No keys
	Slide 59: Decrypted Data – With Keys

	Ending
	Slide 60: Questions and Contact Information

