

Advanced Data Protection with Azure SQL Database and SQL Server

John Sterrett CEO of Procure SQL

About John Sterrett

linkedin.com/in/johnsterrett

Goal of Today's Session

Today's

Goals

Learn how to secure your data with Auditing, Row-Level Security, and Always Encrypted

Gain insight into pros and cons to utilizing advanced data protection features.

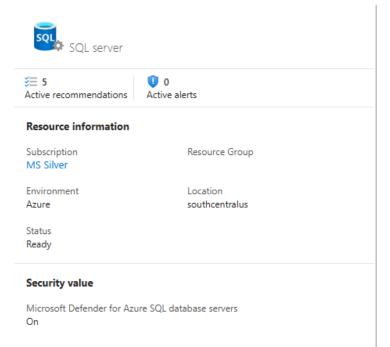
Leverage built in cloud features provided by Azure SQL for advanced data security.

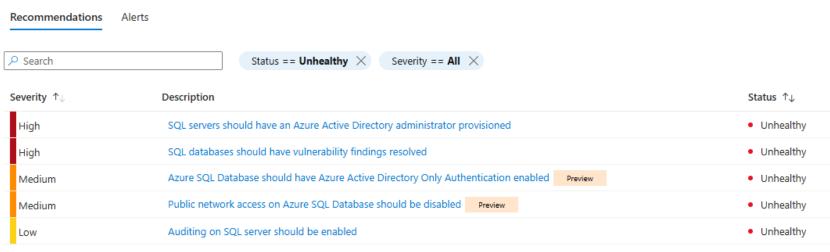
Azure SQL Built In Protection Features

Azure SQL Firewall & Private Link Advanced Threat Protection Transparent
Data
Encryption

Data
Discovery and
Classification

Encryption intransit


Vulnerability Assessments


Azure SQL Server – Vulnerability Assessment

Home > Microsoft Defender for Cloud | Inventory >

Resource health

Details and Remediate Steps

SQL servers should have vulnerability assessment configured

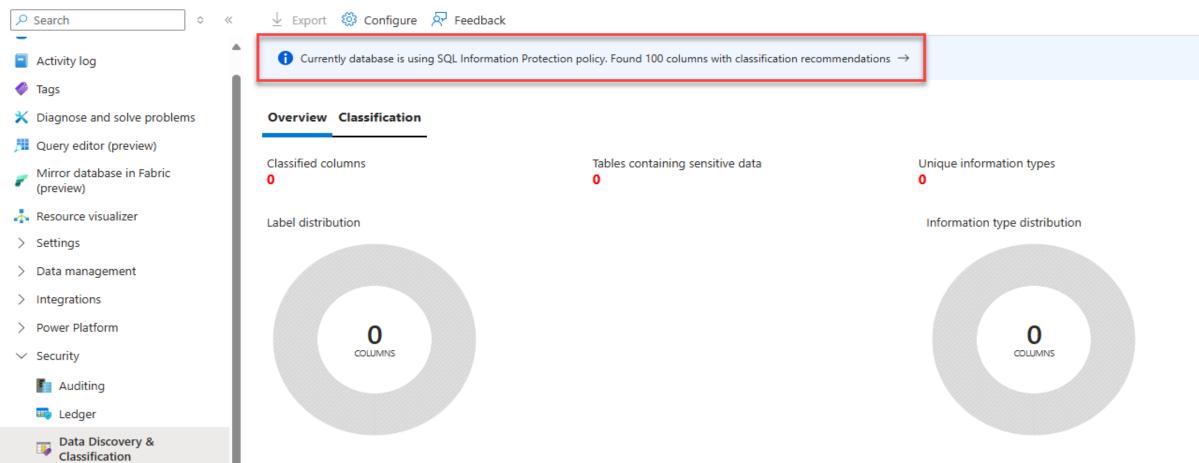
Attack Paths

♂ 0

6. Run a manual scan on one of your databases. The recommendation will be remediated once the first database scan results appear

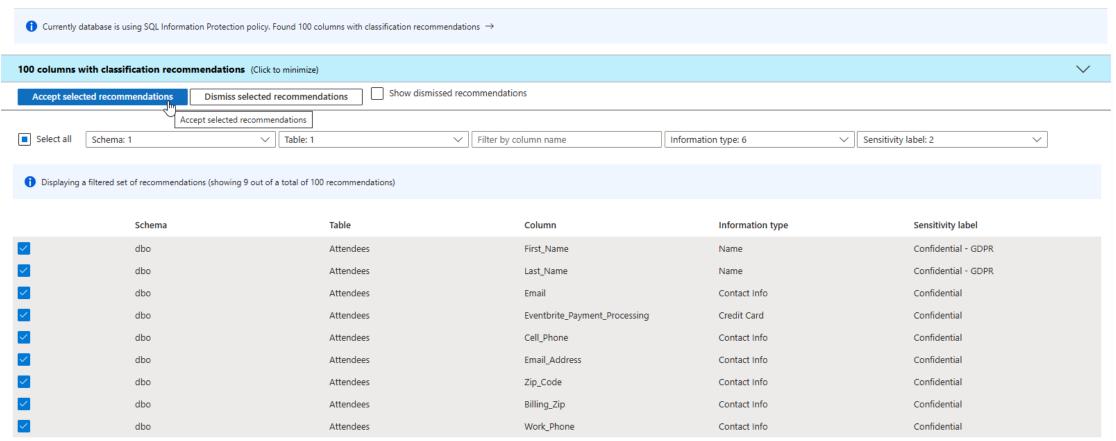
 \times

Successfully remediated the issues on the selected resources.

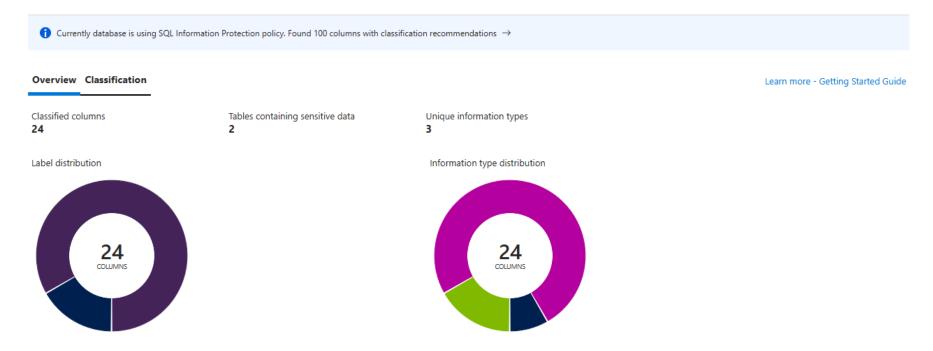

Note: It can take several minutes after remediation completes to see the resources in the 'healthy resources' tab

a few seconds ago Yopen guery 🥥 View policy definition 🚝 View recommendation for all resources Take action Graph Not evaluated Unassigned Risk level (i) Resource Status Take one of the the following actions in order to mitigate the threat: Description Remediate Vulnerability assessment can discover, track, and help you remediate potential Quick fix: database vulnerabilities. Select the unhealthy resources and click "Fix" to launch "Quick fix" remediation. Learn more > Note: After the process completes, it may take up to 30 min until your resources move to the 'healthy resources' tab. General details Scope Ticket ID To enable vulnerability assessment on SQL servers: MS Silver 1. Select the SQL server 2. Open 'Microsoft Defender for Cloud' under 'Security' 3. Make sure Microsoft Defender for Cloud's status is 'enabled at the server-level' or 'enabled at the subscription-level' Last change date Freshness (3) Min 4. Open '(Configure)' 1/15/2025 5. If a warning appears that vulnerability assessment is not configured then click on the 'Enable' button to remediate.

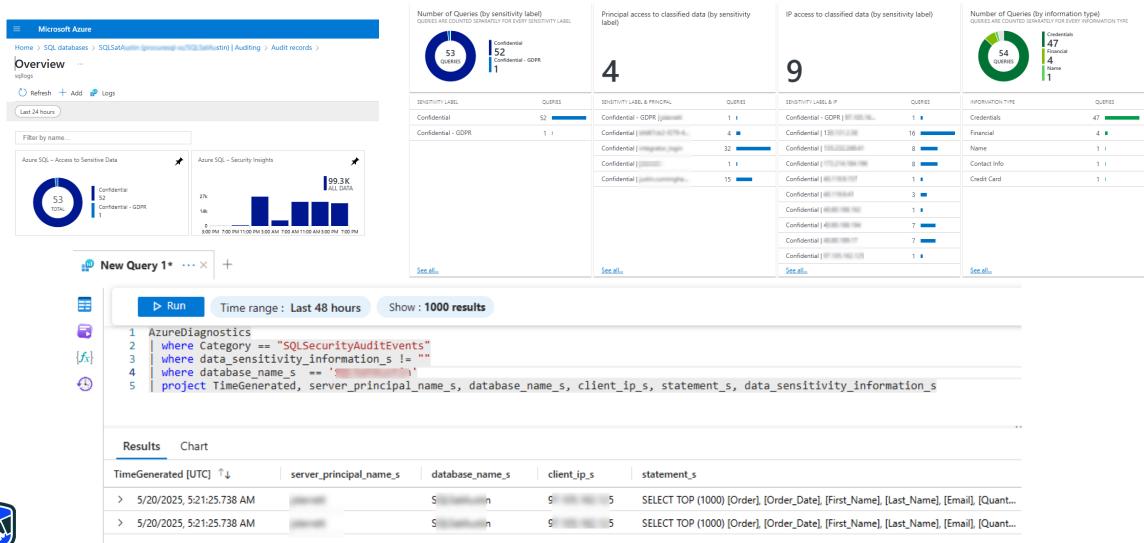
For more information: https://aka.ms/SQLVANewExperienceTroubleshooting


Discover and Classify Sensitive Data

Adding Classified Columns



Load more


Data Classification after Saving Recommendations

Schema: 1	~	Table: 2	~	Filter by column name	Information type: 3	~	Sensitivity label: 2
Schema	Table			Column	Information type		Sensitivity label
√ dbo							
	Atten	dees		First_Name	Name		Confidential - GDPR
	Atten	dees		Last_Name	Name		Confidential - GDPR
	Atten	dees		Email	Contact Info		Confidential
	Atten	dees		Eventbrite_Payment_Processing	Credit Card		Confidential
	Atten	dees		Cell_Phone	Contact Info		Confidential

Data Sensitive Metrics Found in our SQL Audit

SQL Audit

Identify Who, What, When, Where behind data access, security and schema changes

What do these compliances have in common?

ISO 27001

GDPR

PCI DSS (Payment Card Industry Data Security Standard)

HIPAA (Health Insurance Portability and Accountability Act)

SOX (Sarbanes-Oxley Act)

SQL Audit Enables You To....

Track login attempts, failed logins, which can indicate attempts of malicious attempts

Changes to database schema, permissions, and security configurations

Record Access to both data and object changes in real-time

SQL Audit Decisions

What do we Audit? Were does

Audit Logging Go?

Where do we store audit data?

What should happen when audit logging fails?

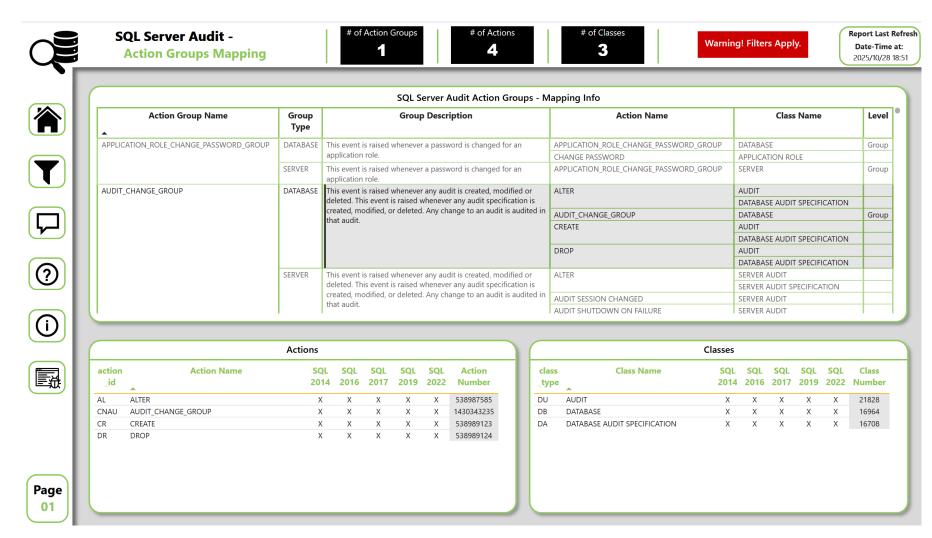
How much log data do we keep?

How do we secure the Audit Logs?

How do we Organize Audits?

What to Audit for HIPAA, PCI & GDPR?

Compliance	Common SQL Audit Actions
HIPAA	SELECT, INSERT, UPDATE, DELETE (data access/modification) on PHI tables; login success/failure; permission changes;
PCI DSS	User account creation/modification/deletion; login attempts; permission changes; data access/modification
GDPR	Logon activity; unauthorized access attempts; data access and processing


Audit Action Groups for HIPAA, GDPR, PCI

Audit Action Group	Description	
SUCCESSFUL_LOGIN_GROUP	Captures all successful login attempts. Important for tracking authorized access (HIPAA, GDPR, PCI).	
FAILED_LOGIN_GROUP	Captures failed login attempts, helping detect unauthorized access or brute force attacks (HIPAA, GDPR, PCI).	
SERVER_PRINCIPAL_CHANGE_GROUP	Tracks creation, alteration, or deletion of server-level principals (logins, users). Critical for permission management (HIPAA, PCI).	
SERVER_ROLE_MEMBER_CHANGE_GROUP	Monitors changes to server role memberships, ensuring role-based access control integrity (HIPAA, PCI).	
AUDIT_CHANGE_GROUP	Audits creation, modification, or deletion of audit objects and audit specifications, ensuring audit trail integrity (HIPAA, PCI, GDPR).	
APPLICATION_ROLE_CHANGE_PASSWORD_GROUP	Tracks changes to application role passwords, securing application-level access (HIPAA, PCI).	
LOGIN_CHANGE_PASSWORD_GROUP	Captures password changes for logins, supporting credential management policies (HIPAA, PCI).	
SCHEMA_OBJECT_CHANGE_GROUP	Monitors DDL changes (CREATE, ALTER, DROP) on schema objects at the server level, important for tracking structural changes (HIPAA, GDPR).	
DATABASE_OBJECT_PERMISSION_CHANGE_GROUP	Tracks permission changes on database objects, ensuring proper access control (HIPAA, PCI, GDPR).	
DATABASE_PRINCIPAL_CHANGE_GROUP	Monitors changes to database principals (users, roles), supporting identity management (HIPAA, PCI).	

These server-level action groups are added to server audit specifications, which audit events across the entire SQL Server instance.

For detailed data access auditing (e.g., SELECT, INSERT, UPDATE, DELETE on specific tables), database audit specifications with database-level action groups are used.

SQL Audit Action Groups Cheat Sheet

SQL Audit – SQL Server vs. Azure SQLDB

SQL Server

- To create, alter, or drop a server audit, principals require the ALTER ANY SERVER AUDIT or the CONTROL SERVER permission.
- Users with the ALTER ANY SERVER AUDIT permission can create server audit specifications and bind them to any audit.
- After a server audit specification is created, it can be viewed by principals with the CONTROL SERVER or ALTER ANY SERVER AUDIT permissions, the sysadmin account, or principals having explicit access to the audit.

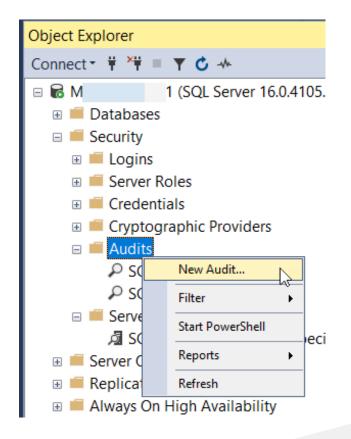
Azure SQL Database

- Need Contributor role or higher on the database or server resource
 - Permissions to execute 'Microsoft.Sql/servers/extendedAuditingSettings/write'
 - Permission to execute 'Microsoft.Sql/servers/databases/extendedAuditingSettings/write'
- The following audit policies are included by default
 - BATCH_COMPLETED_GROUP SUCCESSFUL_DATABASE_AUTHENTICATION_GROUP FAILED_DATABASE_AUTHENTICATION_GROUP
- Additional changes can be <u>made via API calls</u>.
- Enabling auditing on the database in addition to enabling auditing on the server doesn't override or change any of the settings of the server auditing

SQL Audit Targets - Storage

Targets include

Azure - Blob storage, Log Analytics, Event Hub


SQL Server – Files, Event Logs

Use file targets with appropriate size limits (MAXSIZE) and rollover files (MAX_ROLLOVER_FILES) to prevent disk space issues.

Reserve disk space upfront (RESERVE_DISK_SPACE = ON) to avoid audit failures due to insufficient space.

Creating a SQL Audit

Azure SQL Auditing

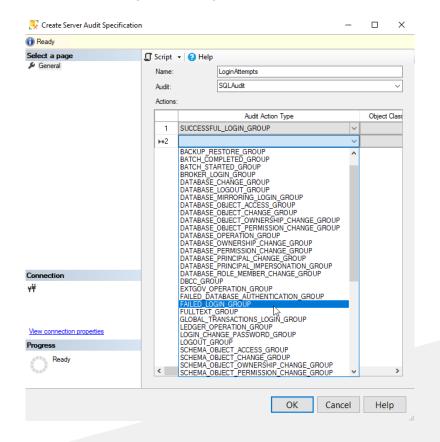
Azure SQL Auditing tracks database events and writes them to an audit log in your Azure Storage account, Log Analytics workspace or Event Hub.

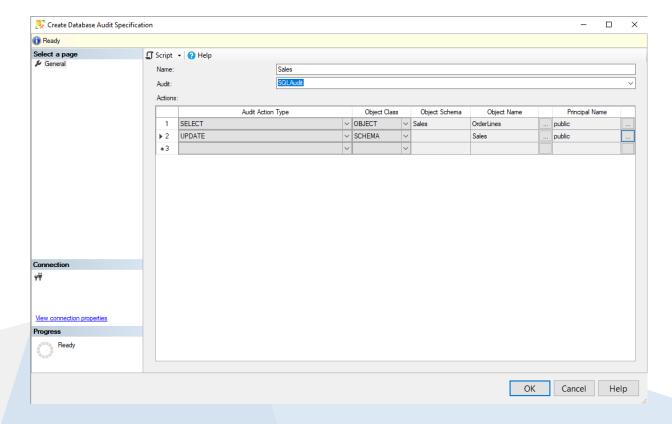
Learn more about Azure SQL Auditing

Enable Azure SQL Auditing ①

Audit log destination (choose at least one):

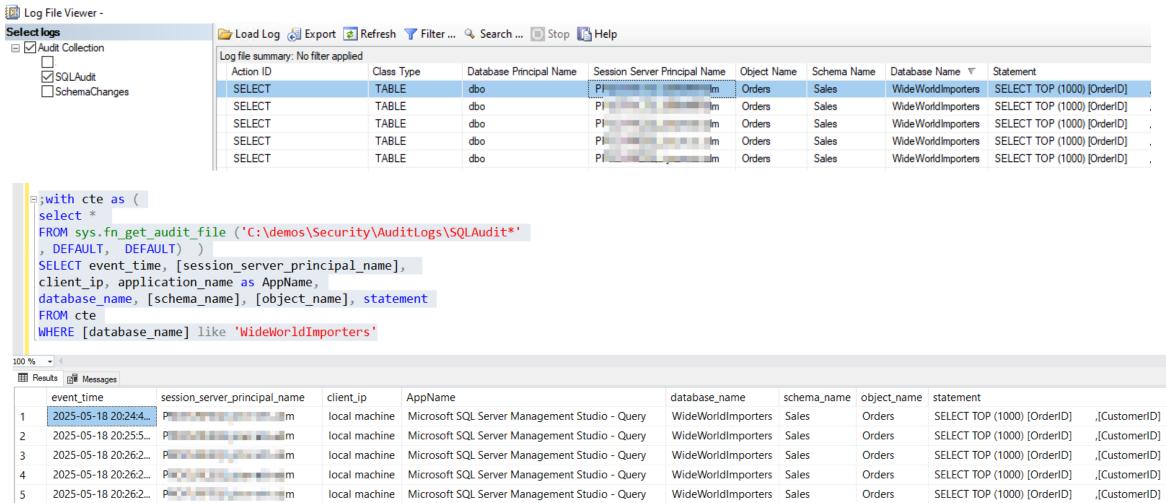
Storage


Log Analytics


Event Hub

How to Audit events?

<u>Server Audit Specifications</u> and <u>Database Audit Specifications</u> are used to specify what events we will audit.


T-SQL Basic Example

```
CREATE SERVER AUDIT
Audit_Compliance TO FILE (
FILEPATH = 'C:\AuditLogs\')
WITH (ON_FAILURE =
CONTINUE);
GO

ALTER SERVER AUDIT
Audit_Compliance WITH (STATE = ON);
GO
```

```
CREATE SERVER AUDIT SPECIFICATION AuditSpec_Compliance
FOR SERVER AUDIT Audit_Compliance
ADD (SUCCESSFUL_LOGIN_GROUP),
ADD (FAILED_LOGIN_GROUP),
ADD (SERVER_PRINCIPAL_CHANGE_GROUP),
ADD (SERVER_ROLE_MEMBER_CHANGE_GROUP),
ADD (AUDIT_CHANGE_GROUP),
ADD (LOGIN_CHANGE_PASSWORD_GROUP),
ADD (APPLICATION_ROLE_CHANGE_PASSWORD_GROUP);
G<sub>0</sub>
ALTER SERVER AUDIT SPECIFICATION AuditSpec_Compliance
WITH (STATE = ON);
G<sub>0</sub>
CREATE DATABASE AUDIT [CustomerDataAudit]
FOR SERVER AUDIT [SQLAudit]
ADD (SELECT ON OBJECT::[dbo].[Customers] BY [public]),
ADD (UPDATE ON OBJECT::[dbo].[Customers] BY [public]),
ADD (INSERT ON OBJECT::[dbo].[Customers] BY [public]),
ADD (DELETE ON OBJECT::[dbo].[Customers] BY [public])
```

Viewing Audit with Log File Viewer

SQL Audit Best Practices

Define	Clear Audit Goals and Scope			
Use	Server and Database Audit specifications – Limit Tracked Events			
Review	Audit Logs Regularly			
Secure	Secure Your Audit Logs			
Backup	Your Audit Logs			
Audit	Your Audit - Verify intended events are being logged			

Row-Level Security (RLS)

Securing Your Data at the Row Level

Why Row-Level Security?

Applications need to limit a users access to only certain rows of data in a database. Security needs to be embedded in the database to work for ALL APPLICATIONS.

Control both read and write data at the row level

No app changes needed, works transparently when queries execute

Centralized Security Logic within the database

Apps consume secured data

Excel, .NET, Power BI - Direct Query, etc....

RLS Real-World Examples

Health Care (Patient Data Access Controls)

Nurses can only view rows of their assigned patients

Doctors access broader data but are blocked from data unless authorized

Patients can only see their data

Financial Services

Financial Advisors only see their client's portfolios

Auditors access transition history for only the Financial Advisors they audit

E-Commerce / Multi-Tenant

Vendors view only their sales records and customer orders Platform admins access data for vendors assigned to them.

How does RLS Work?

Predicate-based access control added to regular access

Two types of security predicates

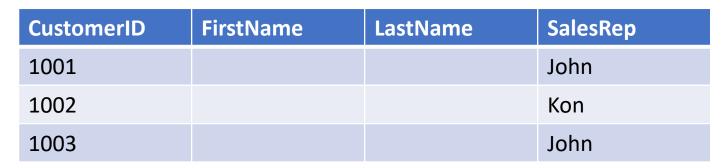
Filter predicates – silently filter SELECT, UPDATE and DELETE operations to exclude rows that will not satisfy the predicate

Block predicates – block INSERT, UPDATE, DELETE operations that will not satisfy the predicate

AFTER INSERT and AFTER UPDATE predicates can prevent users from updating rows to values that violate the predicate.

BEFORE UPDATE predicates can prevent users from updating rows that currently violate the predicate.

BEFORE DELETE predicates can block delete operations.



How to Implement RLS

dbo.Customers

Each row of your table has column that determine which user can access the data

Create inline table-value function that defines row level access criteria

CREATE FUNCTION RLS.CustomerPredicate (@SalesRep AS sysname)
RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN SELECT 1 AS Access
WHERE @SalesRep = USER_NAME() OR USER_NAME() = 'Manager'
GO

Security policy adds security predicates on tables using the function provided

CREATE SECURITY POLICY RLS.CustomerPolicy
ADD FILTER PREDICATE RLS.CustomerPredicate(SalesRep) ON Sales.Customer,
ADD BLOCK PREDICATE RLS.CustomerPredicate(SalesRep) ON Sales.Customer
GO

Authorization Methods with RLS

Any lookup defined by business rules can be used

Lookup Options

SESSION_CONTEXT() - Applications

Local Lookup table

SQL Roles

Specific users – admins as an example

RLS Example (Group Activity)

dbo.Sales - Table

User Name	Country	Sales
Fred	USA	10000
Chris	USA	9500
Tom	France	9600
Fred	Spain	9200
Chris	Germany	9000

RLS – User lookup Example


```
CREATE FUNCTION
Security.fn SalesSecurity(@UserName AS sysname)
RETURNS TABLE
WITH SCHEMABINDING
AS
  RETURN SELECT 1 AS fn SalesSecurity Result
   -- Logic for filter predicate
  WHERE @UserName = USER NAME() OR USER NAME() =
'CEO';
GO
CREATE SECURITY POLICY Security. UserFilter
ADD FILTER PREDICATE
Security.fn SalesSecurity(UserName)
ON dbo.Sales WITH (STATE = ON);
GO
EXECUTE AS USER = 'CEO';
SELECT * FROM Sales;
REVERT;
GO
EXECUTE AS USER = 'Fred';
SELECT * FROM Sales;
REVERT;
```

DatabaseUser

Database User

dbo.Sales - Table

User Name	Country	Sales
Fred	USA	10000
Chris	USA	9500
Tom	France	9600
Fred	Spain	9200
Chris	Germany	9000

User Name	Country	Sales
Fred	USA	10000
Fred	Spain	9200

RLS – SQL Roles Example

```
ALTER ROLE [USA] ADD MEMBER [CEO]
ALTER ROLE [FRANCE] ADD MEMBER [CEO]
ALTER ROLE [SPAIN] ADD MEMBER [CEO]
ALTER ROLE [USA] ADD MEMBER [Fred]
ALTER ROLE [USA] ADD MEMBER [Chris]
ALTER ROLE [FRANCE] ADD MEMBER [Tom]
ALTER ROLE [SPAIN] ADD MEMBER [Fred]
ALTER ROLE [GERMANY] ADD MEMBER [Chris]
CREATE FUNCTION Security.fn SalesSecurity(@RoleName AS
sysname)
RETURNS TABLE
WITH SCHEMABINDING AS
RETURN ( SELECT 1 AS AccessGranted
         WHERE IS_ROLEMEMBER(@RoleName) = 1);
GO
EXECUTE AS USER = 'CEO';
SELECT * FROM Sales;
REVERT;
GO
EXECUTE AS USER = 'Fred';
SELECT * FROM Sales;
REVERT;
GO
```

<u>Database</u> <u>User</u>

DatabaseUser

dbo.Sales - Table

User Name	Country	Sales
Fred	USA	10000
Chris	USA	9500
Tom	France	9600
Fred	Spain	9200
Chris	Germany	9000

User Name	Country	Sales
Fred	USA	10000
Fred	Spain	9200

RLS Lookup Table Example

```
CREATE TABLE RLS.UsersSuppliers (
UsersSuppliersID int NOT NULL CONSTRAINT
PK_RLSUsersSuppliers PRIMARY KEY CLUSTERED
IDENTITY
,UserID nvarchar(255) NOT NULL
,SupplierID int NOT NULL )
--Grant the test user access
--to a single supplier ID
INSERT INTO RLS.UsersSuppliers (UserID,
SupplierID)
VALUES ('RLSLookupUser',4)
```

<u>UserSuppliersID</u>	<u>UserID</u>	<u>SuppliersID</u>	
1	RLSLookupUser	4	

```
CREATE FUNCTION RLS.AccessPredicate SupplierID PurchasingSuppliers
(@SupplierID int)
RETURNS TABLE
WITH SCHEMABINDING
AS RETURN
SELECT 1 AccessResult
FROM RLS. Users Suppliers US
INNER JOIN Purchasing. Suppliers PS
 ON US.SupplierID = PS.SupplierID
WHERE US. SupplierID = @SupplierID
AND US.UserID = USER NAME()
GO
CREATE SECURITY POLICY
RLS.SecurityPolicy SupplierID PurchasingSuppliers
ADD FILTER PREDICATE
RLS.AccessPredicate SupplierID PurchasingSuppliers
(SupplierID) ON Purchasing Suppliers,
ADD BLOCK PREDICATE
RLS.AccessPredicate SupplierID PurchasingSuppliers(SupplierID) ON
Purchasing Suppliers WITH (STATE = ON, SCHEMABINDING = ON)
```


RLS Side Attacks

Malicious Security Policy Manager

Divide By Zero Attack

Cross-feature compatibility

Divide By Zero Attack


```
declare @i int = 2995, @CreditLimit int
  ⊟WHILE @i < 3002
  BEGIN
       BEGIN TRY
       SELECT @CreditLImit = 1
       FROM Sales Customers
       WHERE CustomerID = 801
           AND 1/(@i - CreditLimit) = 0
       END TRY
       BEGIN CATCH
           PRINT 'Bingo Credit Limit is '+ CAST(@i AS VARCHAR(200))
       END CATCH
   select @i = @i+1
   END
100 % - 4
Messages
  Bingo Credit Limit is 3000
```

Divide By Zero At Scale

CustomerID CreditLimit 1 801 3000 2 802 2940 3 803 2000 4 804 2200 5 805 3300 6 806 3000 7 807 3100 8 808 1800 9 809 1700 10 810 1200 11 811 2100 12 812 2200 13 813 2600 14 814 2310	⊞ Results					
2 802 2940 3 803 2000 4 804 2200 5 805 3300 6 806 3000 7 807 3100 8 808 1800 9 809 1700 10 810 1200 11 811 2100 12 812 2200 13 813 2600		CustomerID	CreditLimit			
3 803 2000 4 804 2200 5 805 3300 6 806 3000 7 807 3100 8 808 1800 9 809 1700 10 810 1200 11 811 2100 12 812 2200 13 813 2600	1	801	3000			
4 804 2200 5 805 3300 6 806 3000 7 807 3100 8 808 1800 9 809 1700 10 810 1200 11 811 2100 12 812 2200 13 813 2600	2	802	2940			
5 805 3300 6 806 3000 7 807 3100 8 808 1800 9 809 1700 10 810 1200 11 811 2100 12 812 2200 13 813 2600	3	803	2000			
6 806 3000 7 807 3100 8 808 1800 9 809 1700 10 810 1200 11 811 2100 12 812 2200 13 813 2600	4	804	2200			
7 807 3100 8 808 1800 9 809 1700 10 810 1200 11 811 2100 12 812 2200 13 813 2600	5	805	3300			
8 808 1800 9 809 1700 10 810 1200 11 811 2100 12 812 2200 13 813 2600	6	806	3000			
9 809 1700 10 810 1200 11 811 2100 12 812 2200 13 813 2600	7	807	3100			
10 810 1200 11 811 2100 12 812 2200 13 813 2600	8	808	1800			
11 811 2100 12 812 2200 13 813 2600	9	809	1700			
12 812 2200 13 813 2600	10	810	1200			
13 813 2600	11	811	2100			
	12	812	2200			
14 814 2310	13	813	2600			
	14	814	2310			
15 815 2900	15	815	2900			

```
WHILE @CustomerID < 850
BEGIN
  WHILE @CreditLimit < 10000 AND @CustomerID NOT IN (SELECT
CustomerID from @Customers)
   BEGIN
       BEGIN TRY
           INSERT INTO @Customers (CustomerID, CreditLimit)
           SELECT C.CustomerID, C.CreditLimit
           FROM Sales Customers C
           WHERE C.CustomerID= @CustomerID
         AND 1/(C.CreditLimit - @CreditLimit) = 0
       END TRY
       BEGIN CATCH
            INSERT INTO @Customers (CustomerID, CreditLimit)
            SELECT @CustomerID, @CreditLimit
            BREAK --Stop processing this row when the correct value
is found
       END CATCH
       SELECT @CreditLimit += 1
  END
 SELECT @CustomerID += 1
 SELECT @CreditLimit = 0
END
SELECT *
FROM @Customers
ORDER BY CustomerID
```


RLS Identify Attacks

Excessive Errors – 8134 (Divide By Zero)

SQL Server Side Trace Extended Events

Server or Database Audits (Why we started with Audits ©)

SQL Advanced Threat Protection

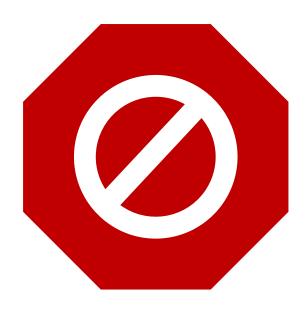
Performance changes

Excessive CPU Usage
Excessive requests per second

RLS Best Practices

It's highly recommended to create a separate schema for the RLS objects: predicate functions, and security policies.

The security policy manager doesn't require SELECT permission on the tables they protect.


Keep predicate functions short and sweet. Avoid using excessive table joins in predicate functions to maximize performance.

Follow regular performance tuning best practices for predicates.

Features That Don't Play Well With RLS

More Details: Microsoft Learn RLS Cross-Feature Compatibility

DBCC SHOW_STATISTICS

Filestream (Not Supported)

Memory-Optimized Tables

Indexed Views

Change Data Capture

Full-Text Search

Columnstore Indexes

Partitioned Views

Temporal Tables

RLS Anti-Patterns

Using Features that can introduce data leakage

Highly Transactional Systems

Databases without Direct user access

Less Experienced Teams

Staging or Loading Tables

Always Encrypted

Why Should We Use Always Encrypted?

Feature	Encrypt Data At	Protects Against	Key Management	App Changed Needed
Transparent Data Encryption (TDE)	Rest (files)	Physical theft	Internal or EKM	No
Backup Encryption	Backup files	Backup theft	Internal or EKM	No
Column Level Encryption	Column Level	Unauthorized access to column data	Internal or EKM	Yes
TLS	Transit	Network eavesdropping	N/A	No
Always Encrypted	Column Level	DBAs, admins, memory attacks	External (client side)	Yes

Encryption Keys

```
CREATE COLUMN MASTER KEY [CMK1]
WITH
KEY_STORE_PROVIDER_NAME =
N'MSSQL_CERTIFICATE_STORE',
KEY_PATH =
N'LocalMachine/My/2379554....,
ENCLAVE_COMPUTATIONS (SIGNATURE =
0x5B1A...)
COLUMN ENCRYPTION KEY [CEK1]
WITH VALUES
 COLUMN_MASTER_KEY = [AE_CMK1],
ALGORITHM = 'RSA_OAEP',
ENCRYPTED_VALUE = 0x01700000016...
```

Two-level key hierarchy

- Column encryption keys (CEK) encrypts data
- Column master keys (CMKs) encrypts
 CEKs

The database stores metadata about keys

- Enclave-enabled CMKs have ENCLAVE_COMPUTATIONS set
- Enclave-enabled CEKs are encrypted with enclave-enabled CMKS

Key Storage Decisions

Windows - Certificate Store

Control and Compliance

No Cloud Dependency

Existing Infrastructure Utilization

Simple Implementation for

Smaller Deployments

No Additional Costs

Azure Key vault

Requires Azure Key Vault Access

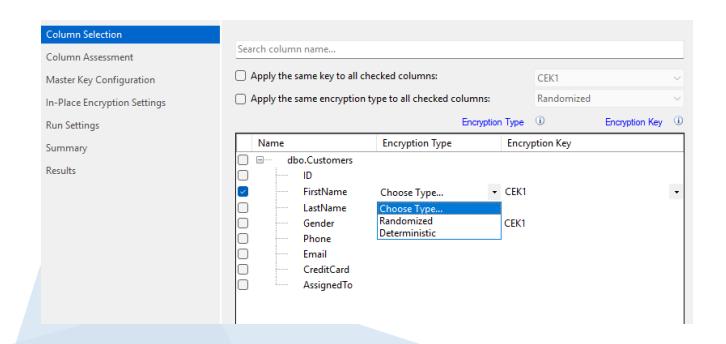
Separation of Duties

End to End Protection

Centralized Management

Scalable and Flexibility

Enhanced Security (RBAC)


Simple Key Rotation

Always Encrypted Types in the Beginning

Deterministic

- Less Secure and Predictable
- Great WHERE clause equality JOINS
- Indexes
- Randomize
 - More Secure
 - Non-Serchable (SQL 2016 days)

You must decide during the setup of encrypting a column.

Deterministic vs Randomized

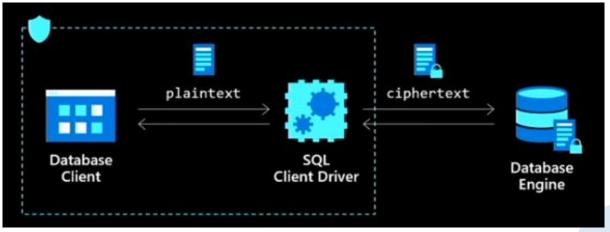
Plaintext

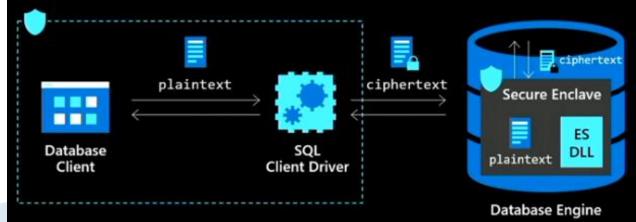
FirstName Gender Gail F Temi F Diane F Ken M Roberto M Rob M Jossef M Dylan M

Deterministic (Not Random)

	FirstName	Gender
1	Gail	0x01D735B667AFDA97527CBF1B78F7E491932C5D71C99535AA99
2	Temi	0x01D735B667AFDA97527CBF1B78F7E491932C5D71C99535AA99
3	Diane	0x01D735B667AFDA97527CBF1B78F7E491932C5D71C99535AA99
4	Ken	0x0185F5C2FBCA71111F480EC98AD316036D0AB93F40CEFD249F
5	Roberto	0x0185F5C2FBCA71111F480EC98AD316036D0AB93F40CEFD249F
6	Rob	0x0185F5C2FBCA71111F480EC98AD316036D0AB93F40CEFD249F
7	Jossef	0x0185F5C2FBCA71111F480EC98AD316036D0AB93F40CEFD249F
8	Dylan	0x0185F5C2FBCA71111F480EC98AD316036D0AB93F40CEFD249F

Randomized


	FirstName	Gender
1	Gail	0x01E2D1CDB2DB0C5D25AB7349A4A586B55907C310803A7F0
2	Terri	0x01A77DEBC67840757FF4F75D8053D44ECCD5AA7E235AFA8
3	Diane	0x01BEA66C9E94D5952CBF17124CD5C02D12473A8BCA61E81
4	Ken	0x01FC1B79A0C83334384EBBCD820E2B4FDFB9B13AD888B83
5	Roberto	0x010C9B87ED821E0292B6CBF3AAF0DE7578792A79415319E
6	Rob	0x0190F8ADFD36E2B97D8608F8B3F2DA102776EB85DD3CD4
7	Jossef	0x01BA22B1D9154B4D23A85F1494949512678E3A62237E9A8C
8	Dylan	0x014A5FAB36036F65BAF7EE3AF3F68678DF1858A7D00BADE


Always Encrypted with Secure Enclaves

AE without Secure Enclaves

AE with Secure Enclaves

SQL Bits – Demystifying Always Encrypted with security enclaves

Computation over encrypted Columns

Randomized

No scalar operations

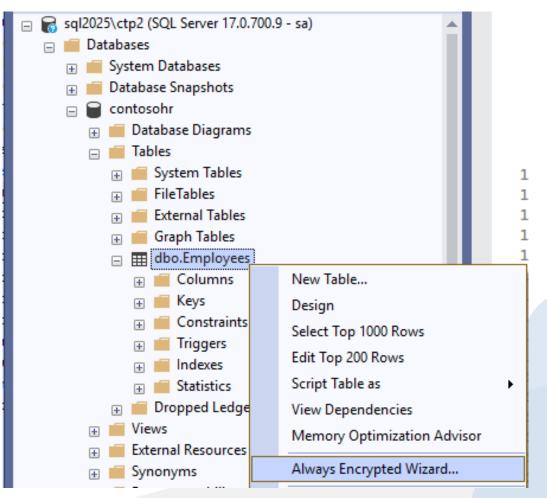
Deterministic

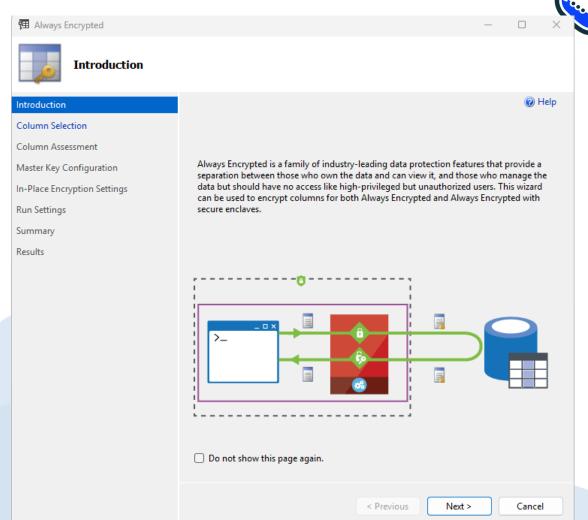
Equality queries

Randomized & enclaved-enabled keys

Range/LIKE queries, sorting

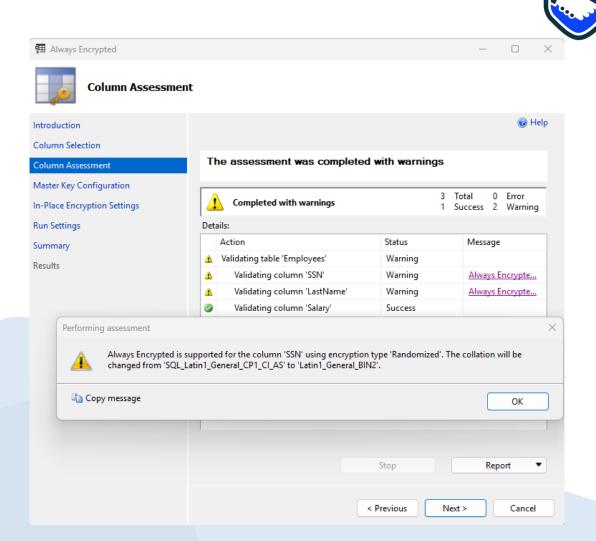
Always Encrypted - Required Code Changes

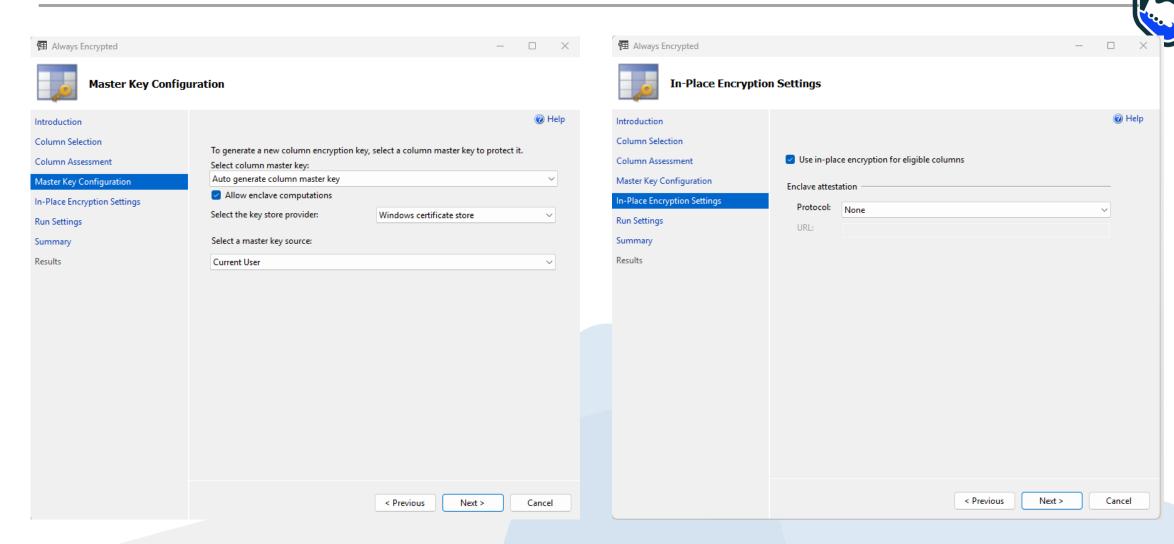



Connection String (Encrypted Setting=Enabled)]

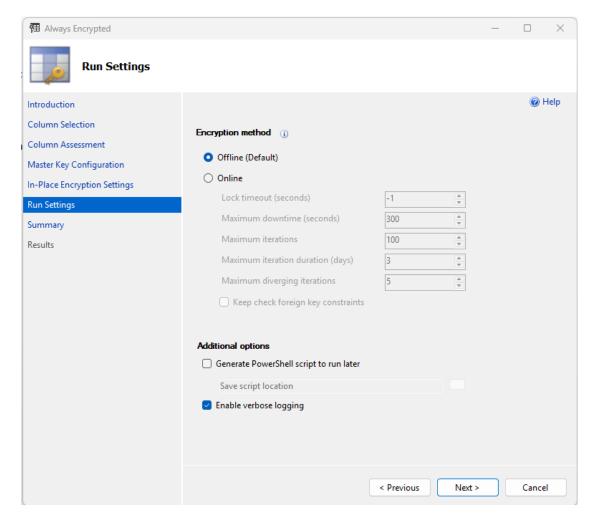
Parametrization of Queries – No literals in filters

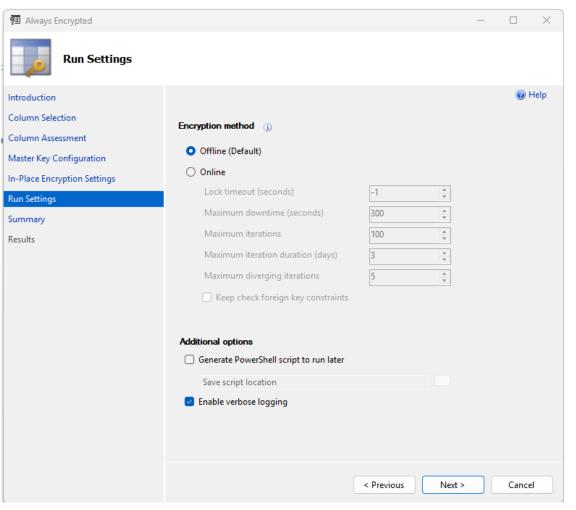
Explicit Data Type (Parameter Type must match encrypted column type)


Enabling Always Encrypted (1 of 5)

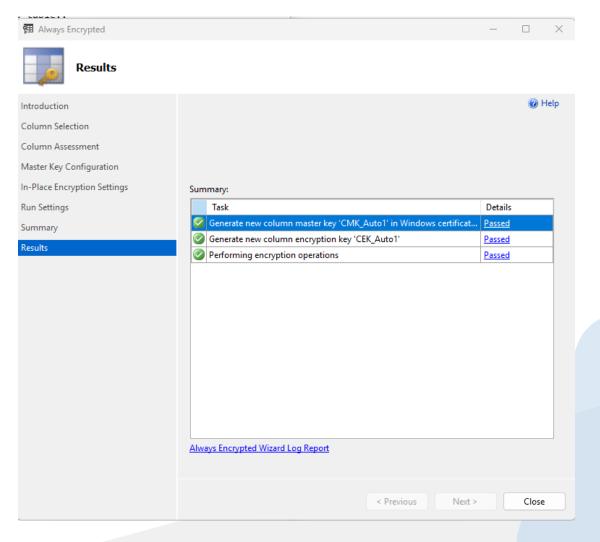


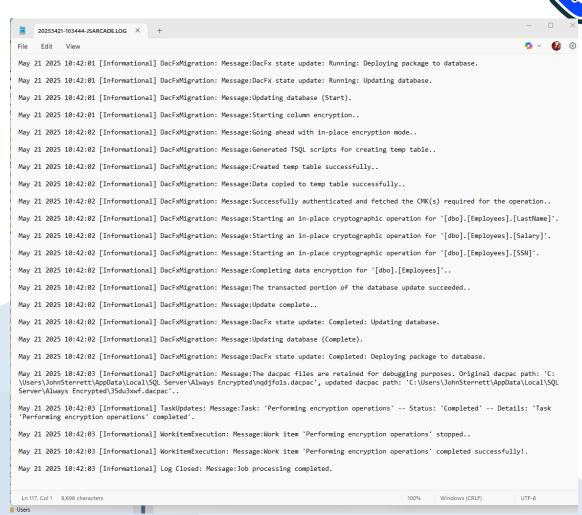
Enabling Always Encrypted (2 of 5)

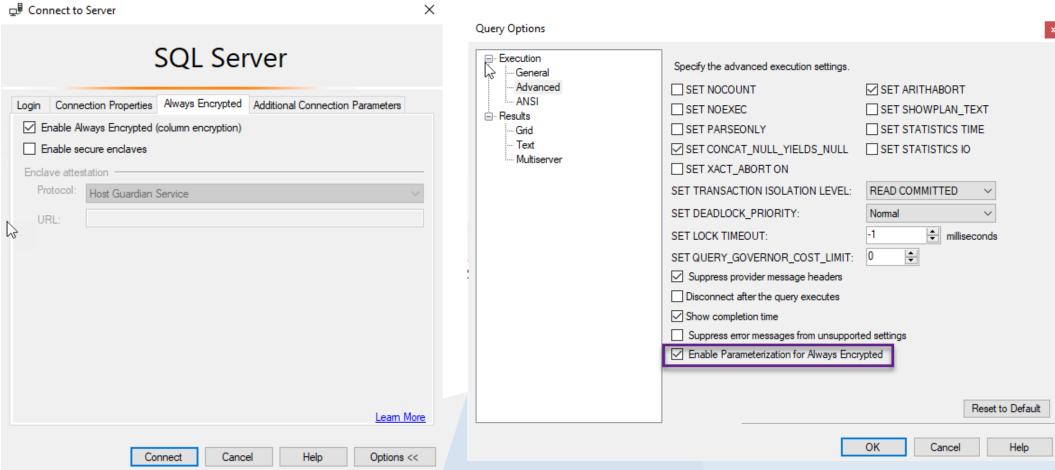




Enabling Always Encrypted (3 of 5)


Enabling Always Encrypted (4 of 5)



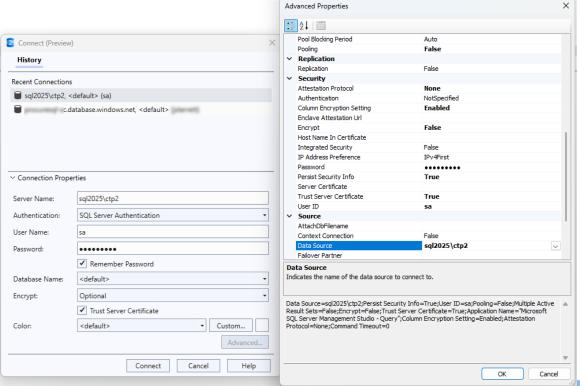

Enabling Always Encrypted (5 of 5)

Connecting with SSMS 21

Encrypted Columns – No keys


```
□SELECT [EmployeeID]
            ,[SSN]
            ,[FirstName]
            ,[LastName]
            ,[Salary]
      FROM [WideWorldImporters].[HR].[Employees]
100 %

    ⊞ Results


    Messages

      EmployeeID
                   SSN
                                                FirstName
                                                             LastName
                                                                          Salary
                   0x019990EFFD7BB0BFF94F4B5...
                                                Catherine
                                                             Abel
                                                                          0x01FD581DD2F6D7578...
                                                                          0x016719580C6B27A9C4...
                   0x014D1454895116660A67D9...
                                                Kim
                                                             Abercrombie
```

Decrypted Data – With Keys

Questions and Contact Information

Feedback for slides

https://www.linkedin.com/in/jo hnsterrett